Let's draw the continents and oceans
This YouTube video will guide you through a fun activity where you will draw the earth's continents and oceans.
This YouTube video will guide you through a fun activity where you will draw the earth's continents and oceans.
The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic waves, ranging from radio transmission waves to nuclear gamma-ray (γ-ray) emissions, is interesting in itself.
Even more intriguing is that all of these different phenomena are manifestations of the same thing—electromagnetic waves (see Figure 15.1). What are electromagnetic waves? How are they created, and how do they travel? How can we understand their widely varying properties? What is the relationship between electric and magnetic effects? These and other questions will be explored.
An image that illustrates light reflecting off a plain mirror.
This online resource explores the following topics:
In this course you will learn:
An explanation of how LOL diagrams allow us to visually represent what we mean by conservation of energy as well as what we mean by an energy system.
In this lesson you will learn about:
Introduction to magnetism: Wikipedia article that provides an overview of the concept.
The force that acts across the air gaps between magnets is the same force that creates wonders such as the Aurora Borealis. In fact, magnetic effects pervade our lives in myriad ways, from electric motors to medical imaging and computer memory. In this chapter, we introduce magnets and learn how they work and how magnetic fields and electric currents interact.
Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.