Electric field definition
The idea of the electric field, how it's useful, and explains how the electric field is defined.
The idea of the electric field, how it's useful, and explains how the electric field is defined.
There are many different processes and phenomena that emit electromagnetic radiation. Humans have taken advantage of many of these processes to develop technologies that use electromagnetic radiation.
The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic waves, ranging from radio transmission waves to nuclear gamma-ray (γ-ray) emissions, is interesting in itself.
Even more intriguing is that all of these different phenomena are manifestations of the same thing—electromagnetic waves (see Figure 15.1). What are electromagnetic waves? How are they created, and how do they travel? How can we understand their widely varying properties? What is the relationship between electric and magnetic effects? These and other questions will be explored.
Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
Magnetism is an interaction that allows certain kinds of objects, which are called ‘magnetic’ objects, to exert forces on each other without physically touching. A magnetic object is surrounded by a magnetic ‘field’ that gets weaker as one moves further away from the object. A second object can feel a magnetic force from the first object because it feels the magnetic field of the first object. The further away the objects are the weaker the magnetic force will be.
The particle model of matter is one of the most useful scientific models because it describes matter in all three states. Understanding how the particles of matter behave is vital if we hope to understand science!
The model also helps us to understand what happens to the particles when matter changes from one state to another.
In this unit, you will explore the three phases of matter and then look at the properties and differences between them. You will explore their shape, volume, and kinetic energy.
Photoelectric materials emit electrons when they absorb light of a high-enough frequency.
In this unit you will learn about different materials by investigating and observing the behaviour of their properties. This will include learning about the differences between metals and non-metals; whether they are isolators or conductors of electricity and heat, whether they are magnetic, how dense they are and whether they are acidic or basic.