Distribution of earth's water
This online resource discusses the distribution of earth's water.
This online resource discusses the distribution of earth's water.
There are many different processes and phenomena that emit electromagnetic radiation. Humans have taken advantage of many of these processes to develop technologies that use electromagnetic radiation.
This YouTube video will guide you through a fun activity where you will draw the earth's continents and oceans.
The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic waves, ranging from radio transmission waves to nuclear gamma-ray (γ-ray) emissions, is interesting in itself.
Even more intriguing is that all of these different phenomena are manifestations of the same thing—electromagnetic waves (see Figure 15.1). What are electromagnetic waves? How are they created, and how do they travel? How can we understand their widely varying properties? What is the relationship between electric and magnetic effects? These and other questions will be explored.
Introduction to magnetism: Wikipedia article that provides an overview of the concept.
The force that acts across the air gaps between magnets is the same force that creates wonders such as the Aurora Borealis. In fact, magnetic effects pervade our lives in myriad ways, from electric motors to medical imaging and computer memory. In this chapter, we introduce magnets and learn how they work and how magnetic fields and electric currents interact.
Photoelectric materials emit electrons when they absorb light of a high-enough frequency.
This online resource discusses the importance of the ocean, the layers and composition of the ocean and how it moderates climates.
This online resource investigates the features and topology of the ocean floor, the effects of wave erosion and the landforms created by coastal depositions.