Average velocity and speed worked example
Solving a word problem to find average velocity and speed of an object in one-dimension.
Solving a word problem to find average velocity and speed of an object in one-dimension.
Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
Learn how you can calculate the maximum height of a launched object by using the total energy of a system. Energy that is conserved can be transferred within a system from one object to another changing the characteristics of each object, like position.
Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behaviour.
Learn how you can calculate the launch velocity of an object by using the total energy of a system. Energy that is conserved can be transferred within a system from one object to another changing the characteristics of each object, like velocity.
In this unit you will apply your understanding of the components of motion in one dimension using linear equations. This will help you to solve problems about motion in one direction and equip you to understand how these concepts apply to everyday life.
There are three equations for linear motion with constant acceleration. They can be used to calculate, and therefore predict, the outcome of motion when three out of the four variables are known.
You have learnt about static electricity where charged particles (electrons) can move from one object into another giving objects an overall charge. In this unit1 you will learn about current electricity. This is when a continuous flow of charge can be created using a circuit made of conducting wires and an energy source.
The flicker of numbers on a handheld calculator, nerve impulses carrying signals of vision to the brain, an ultrasound device sending a signal to a computer screen, the brain sending a message for a baby to twitch its toes, an electric train pulling into a station, a hydroelectric plant sending energy to metropolitan and rural users—these and many other examples of electricity involve electric current, which is the movement of charge. Humanity has harnessed electricity, the basis of this technology, to improve our quality of life.
When two objects interacting through a field change relative position, the energy stored in the field is changed.