Adhesion and cohesion
Outcomes
In this unit you will learn about:
- The concept and applications of adhesion
- The concept and applications of cohesion
In this unit you will learn about:
The amount of effort saved when using machines is called mechanical advantage (MA). Simple machines use mechanical advantage as a key property to their functionality, helping humans perform tasks that would require more force than a person could produce. We will use the lever as an example of a simple machine to illustrate the concept of mechanical advantage.
In this unit you will learn about:
In this lesson you will learn about:
The force that acts across the air gaps between magnets is the same force that creates wonders such as the Aurora Borealis. In fact, magnetic effects pervade our lives in myriad ways, from electric motors to medical imaging and computer memory. In this chapter, we introduce magnets and learn how they work and how magnetic fields and electric currents interact.
Introduction to magnetism: Wikipedia article that provides an overview of the concept.
In this unit we will learn how these factors can affect the output of a simple machine. We will also learn about the difference between ideal mechanical advantage (IMA) and actual mechanical advantage (AMA), and how to apply your knowledge to calculate the efficiency of various simple machines.
In this unit you will learn that:
The particle model of matter is one of the most useful scientific models because it describes matter in all three states. Understanding how the particles of matter behave is vital if we hope to understand science!
The model also helps us to understand what happens to the particles when matter changes from one state to another.
In this unit, you will explore the three phases of matter and then look at the properties and differences between them. You will explore their shape, volume, and kinetic energy.