Acceleration due to gravity at the space station
What is the acceleration due to gravity at the space station.
What is the acceleration due to gravity at the space station.
Why do astronauts appear weightless despite being near the Earth?
Basics of gravity and the Law of Universal Gravitation.
The force that acts across the air gaps between magnets is the same force that creates wonders such as the Aurora Borealis. In fact, magnetic effects pervade our lives in myriad ways, from electric motors to medical imaging and computer memory. In this chapter, we introduce magnets and learn how they work and how magnetic fields and electric currents interact.
Introduction to magnetism: Wikipedia article that provides an overview of the concept.
This unit is about how things move along a straight line or, more scientifically, how things move in one dimension. Examples of this would be the movement (motion) of cars along a straight road or of trains along straight railway tracks.
This video will look at rotation. Rotation involves turning a shape around a set point.
This online lesson explains what rotations are.
Speed necessary for the space station to stay in orbit.
Students learn about two-axis rotations, and specifically how to rotate objects both physically and mentally about two axes. A two-axis rotation is a rotation of an object about a combination of x, y or z-axes, as opposed to a single-axis rotation, which is about a single x, y or z-axis. Students practice drawing two-axis rotations through an exercise using simple cube blocks to create shapes, and then drawing on triangle-dot paper the shapes from various x-, y- and z-axis rotation perspectives.