Acceleration due to gravity at the space station
What is the acceleration due to gravity at the space station.
What is the acceleration due to gravity at the space station.
The amount of effort saved when using machines is called mechanical advantage (MA). Simple machines use mechanical advantage as a key property to their functionality, helping humans perform tasks that would require more force than a person could produce. We will use the lever as an example of a simple machine to illustrate the concept of mechanical advantage.
Why do astronauts appear weightless despite being near the Earth?
Determining how fast something will be traveling upon impact when it is released from a given height.
Basics of gravity and the Law of Universal Gravitation.
In this unit we will learn how these factors can affect the output of a simple machine. We will also learn about the difference between ideal mechanical advantage (IMA) and actual mechanical advantage (AMA), and how to apply your knowledge to calculate the efficiency of various simple machines.
This unit is about how things move along a straight line or, more scientifically, how things move in one dimension. Examples of this would be the movement (motion) of cars along a straight road or of trains along straight railway tracks.
In this chapter, we’ll use vectors to expand our understanding of forces and motion into two dimensions. Most real-world physics problems (such as with the game of pool pictured here) are, after all, either two- or three-dimensional problems and physics is most useful when applied to real physical scenarios. We start by learning the practical skills of graphically adding and subtracting vectors (by using drawings) and analytically (with math). Once we’re able to work with two-dimensional vectors, we apply these skills to problems of projectile motion, inclined planes, and harmonic motion.
Plotting projectile displacement, acceleration, and velocity as a function of time.