Electric field definition
The idea of the electric field, how it's useful, and explains how the electric field is defined.
The idea of the electric field, how it's useful, and explains how the electric field is defined.
By the end of this lesson you will be able to:
saac Newton (1642–1727) was a natural philosopher; a great thinker who combined science and philosophy to try to explain the workings of nature on Earth and in the universe. His laws of motion were just one part of the monumental work that has made him legendary. The development of Newton’s laws marks the transition from the Renaissance period of history to the modern era. This transition was characterized by a revolutionary change in the way people thought about the physical universe. Drawing upon earlier work by scientists Galileo Galilei and Johannes Kepler, Newton’s laws of motion allowed motion on Earth and in space to be predicted mathematically.
Short Physics tutorial on Forces. On completion you will be able to
Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
Magnetism is an interaction that allows certain kinds of objects, which are called ‘magnetic’ objects, to exert forces on each other without physically touching. A magnetic object is surrounded by a magnetic ‘field’ that gets weaker as one moves further away from the object. A second object can feel a magnetic force from the first object because it feels the magnetic field of the first object. The further away the objects are the weaker the magnetic force will be.
An elaboration on how to use Newton's second law when dealing with multiple forces, forces in two dimensions, and diagonal forces.
In this chapter, you will learn why it is important to identify a reference frame in order to clearly describe motion. For now, the motion you describe will be one-dimensional. Within this context, you will learn the difference between distance and displacement as well as the difference between speed and velocity. Then you will look at some graphing and problem-solving techniques.
Newton's second law of motion is F = ma, or force is equal to mass times acceleration. Learn how to use the formula to calculate acceleration.