Applying Newton's first law of motion
Applying Newton's first law to answer some true/false statements about why objects move (or not).
Applying Newton's first law to answer some true/false statements about why objects move (or not).
Introduction to cell theory--the idea that 1) all living things are made of one or more cells, 2) cells are the basic unit of life and 3) all cells come from other cells. Explore the roles that Hooke, Leeuwenhoek and others played in developing cell theory.
Hooke and Leeuwenhoek were two of the first scientists to use microscopes to study the microscopic world of cells. Hooke coined the term "cell" after observing the tiny compartments in cork, while Leeuwenhoek discovered a variety of living creatures in pond water, blood, and other samples. They contributed to the cell theory by suggesting that cells are the fundamental units of life and structure, and that all living things consist of one or more cells that originate from other cells by division.
All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).
As a student, you'll encounter vast amounts of information. Beyond academic material, you must process and interpret news, instructions, communications, and a wealth of other data. You'll also need to separate fact from opinion, and understand the quality of sources. The stronger your reading capabilities, the more efficiently and effectively you can turn information into knowledge.
Figuring out the acceleration of ice down a plane made of ice.
Scalars and vectors are two kinds of quantities that are used in physics and math. Scalars are quantities that only have magnitude (or size), while vectors have both magnitude and direction. Explore some examples of scalars and vectors, including distance, displacement, speed, and velocity.
Introduction to the cell.
An overview of what physics is about as we delve deeper in future videos. How physics is related to math, the other sciences, and the world around us.
An elaboration on how to use Newton's second law when dealing with multiple forces, forces in two dimensions, and diagonal forces.