Applying Newton's first law of motion
Applying Newton's first law to answer some true/false statements about why objects move (or not).
Applying Newton's first law to answer some true/false statements about why objects move (or not).
The amount of effort saved when using machines is called mechanical advantage (MA). Simple machines use mechanical advantage as a key property to their functionality, helping humans perform tasks that would require more force than a person could produce. We will use the lever as an example of a simple machine to illustrate the concept of mechanical advantage.
An introduction to the difference between distance traveled and displacement.
Using a one-dimensional number line to visualise and calculate distance and displacement.
Figuring out the acceleration of ice down a plane made of ice.
Managing time involves accurately predicting how much time it will take to do a task, and then setting aside that amount of time to complete it. Managing time is much more difficult than it may seem, which is why there are entire courses of study and research on the best approaches. But if you develop a method to undertake each component, you’ll be successful.
In this unit we will learn how these factors can affect the output of a simple machine. We will also learn about the difference between ideal mechanical advantage (IMA) and actual mechanical advantage (AMA), and how to apply your knowledge to calculate the efficiency of various simple machines.
Basic primer on Newton's First Law of motion.
Using position-time graphs and number lines to find displacement and distance traveled.
In this lesson you will learn about: