Biodiversity and natural selection
Patterns and processes of evolution. How evolution and natural selection are reflected in the similarities and differences of organisms.
Patterns and processes of evolution. How evolution and natural selection are reflected in the similarities and differences of organisms.
When electromagnetic radiation is absorbed by a material the energy it carries has to go somewhere. When lower energy waves, like radio and infrared waves, are absorbed there can be an increase in temperature of the absorbing material. Higher energy waves, like x-ray and gamma waves, can actually permanently damage or change materials. Learn about the different types of electromagnetic waves and how their energies can influence their effects on objects.
In this video we’re going to discover how to factorise quadratics that don’t have 1 as the coefficient of the x-squared term. These are called non-monic quadratics. We can do it by trial and error and just spotting the factors, but this takes a lot of trial an error. Luckily there is a different method we can use instead, which we will looks at in this video.
Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem.
In this course you will learn how to:
By the end of this unit you will be able to:
By the end of this unit you will be able to:
By the end of this unit you will be able to:
There are a few different ways to solve quadratics: factorising, using the quadratic formula or by completing the square. In this video we look at solving by factorising.
An explanation of wave interference and solution of a few examples to find the value of the total wave when two wave pulses overlap